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Abstract. This study demonstrates the integration of advanced computational
frameworks, including machine learning (ML) and quantum chemical methods,
to address challenges in molecular modeling of xylan chains. Trained ML model
based on the SchNet architecture was validated against classical density functional
theory (DFT) results for xylan homologs up to 15 units. The ML model is employed
to investigate energetic trends in considerably longer chains, up to 80 units, which
would be computationally challenging for DFT due to both memory and time
constraints. The comparison demonstrate that the ML model accurately captures
structural and energetic trends, thereby illustrating its potential as a viable tool
for studying large polysaccharide systems. This work highlights the respective
strengths and limitations of both approaches, thereby providing a foundation for
further ML-based exploration of complex biopolymers and their interactions in
biological and industrial perspectives, and contributes to the growing trend of
leveraging machine learning frameworks to enhance system development and
scalability in computational science.
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1 Introduction

As computational tools become increasingly essential in scientific research, the study
of polysaccharides has highlighted both their structural complexity and computational
challenges, as they often form long, branched chains and intricate networks that present
significant topological-like problems. Polysaccharides play a crucial role in biological
structures and processes due to their unique physical and chemical properties. Xylan, a
primary hemicellulose in plant cell walls, has drawn considerable interest in research,
particularly in fields such as biofuel production, bioinformatics, computational material
science, and biochemical engineering [1]. Given its complex structure and the diverse
environments in which it functions, understanding xylan’s behavior at the molecular level
is essential. Traditionally, method such as DFT, a cornerstone in computational chem-
istry, has been employed to predict the properties of xylan and similar polysaccharides,
particularly due to their high accuracy in conformational and energetic analyses [2]. DFT
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effectively models mechanical and structural properties of materials, with recent studies
applying it to molecular systems like xylobiose, xylan’s simplest oligomer, to explore
bond energies and stability at the quantum level. DFT research underlines its ability
to detail molecular interactions, proving invaluable in understanding xylan’s behavior
both in isolation and during solvent or enzyme interactions [2, 3]. While DFT delivers
high accuracy, it becomes computationally expensive as xylan chain length increases.
Chains exceeding 15 units face time and memory constraints, limiting DFT’s scalability
for practical applications [4].

The development of ML models offers a complementary approach to molecular
modeling, enabling rapid computations with a reasonable degree of accuracy. ML models
like SchNet have demonstrated promising results in predicting equilibrium molecular
properties with high precision, making them suitable for large, complex molecules like
xylan chains [2, 5]. Unlike DFT, ML models can handle significantly larger molecular
systems due to their scalable architecture [6]. Beyond ML and DFT methods, studying
xylan’s behavior in biochemical contexts often involves its interaction with enzymes
like xylanase. This enzyme degrades xylan by cleaving -1,4-glycosidic bonds, a key
process in biofuel production and biotechnology [7]. Insights from ML models on the
structure and behavior of xylan could enhance our understanding of enzyme-substrate
interactions and facilitate the design of more efficient xylanase-based processes [8].

This study presents a computational comparison of DFT and ML in predicting xylan
chain properties. By validating the ML model against DFT for short xylan chains, it
establishes a baseline for accuracy. The validated ML model will then explore energetic
trends in longer chains, emphasizing scalability and predictive power. This computa-
tional framework draws attention to the advantages and limitations of utilizing ML for
the analysis of large biomolecular systems, with a particular focus on its applications
in scalable simulations and predictive modelling. The findings provide an insight into
the development of advanced software solutions and methodologies tailored to xylan
research and other complex biopolymer systems.

2 Modeling

In the background of emerging trends in computational methodologies, this study inte-
grates advanced cheminformatics tools and machine learning models to analyze xylan
molecules. In the proposed calculations on the energy calculated by ML model, a num-
ber of parameters are analyzed, allowing characterization of the structure and molecular
properties of xylan molecules. Here the RDKit cheminformatics package [9] to calcu-
late the solvent accessible surface area (SASA) using the Lee-Richards algorithm [10].
The Lee-Richards method, also referred to as the “slice” algorithm, employs a two-
dimensional representation of the molecule, with each atom represented by a point and
the molecule divided into thin slices perpendicular to a rotation axis. For each slice,
the algorithm calculates the accessible surface area by rolling a spherical probe (typ-
ically representing a water molecule) around the van der Waals surface of the atoms.
Subsequently, the total SASA is calculated by integrating the accessible arcs over all
slices.

The implementation in RDKit employs the FreeSASA library, which provides an
efficient and robust calculation of SASA values. This approach was selected for its high
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accuracy, although it may be more computationally intensive than alternative methods,
such as the Shrake-Rupley algorithm. The default probe radius of 1.4 A was used to
simulate water accessibility, and atoms were classified using the Protor classification
scheme [11] for distinguishing between polar and non-polar surface areas.

2.1 The Surface Parameters

To obtain energy results relative to surface area, the total SASA was calculated to measure
the molecule’s interactive surface with its surroundings. The SASA per monosaccharide
unit, the average SASA in glycosidic bond regions, the total glycosidic bond SASA and
the glycosidic SASA fraction were calculated.

2.2 Energy Parameters

The total energy of the molecule is an indicator of the overall structural stability. The
energy per monosaccharide unit provides an indication of the average energy associated
with a single monomer, thus facilitating comparison between fragments of the structure.
Furthermore, the analysis incorporates the energy density per unit surface area, which
indicates the energy concentration per surface area of a single monosaccharide unit. In
contrast, the glycosidic surface energy represents the energy per unit area within the
glycosidic bond area. The local energy density index integrates data on energy, surface
area, and number of monosaccharide units and atoms, providing a composite parameter
that characterizes the local energy density in a molecule.

2.3 Embedding

In order to generate reliable three-dimensional structures for xylan homologs, the
Enhanced Torsion Distance Geometry embedding algorithm [12], as implemented in
the RDKit software, was employed. This approach combines distance geometry with
empirical data about molecular geometry, to produce high-quality conformations. The
algorithm uses a distance bounds matrix, which ensures the enforcement of realistic
interatomic distances based on covalent radii and van der Waals interactions. These
constraints ensured avoiding unrealistic atom overlaps and maintaining proper bonding
distances.

The firstMinimization procedure was conducted, so that internal energy min-
imization was applied within the RDKit embedding framework. This process reduced
steric hindrances and obeyed chirality and stereochemistry. Although this internal mini-
mization step did not perform a full force field optimization, it employed a penalty-based
approach to refine atomic distances towards the desired values. The resulting structure
closely matched natural conformations, guided by RDKit’s torsion angle preferences
derived from crystallographic data, favoring experimentally observed angles for rotat-
able bonds. It is also interesting that ML model managed particularly well on such
somewhat unbalanced structures, shown below.
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2.4 Deep Learning Model

The ML model was trained on the QM9 dataset, which contains information about
small organic molecules, using the advanced SchNet neural network architecture [13].
The SchNet model was designed by Schiitt et al. [14] to efficiently represent molecular
structure, thereby enabling the prediction of the properties of molecules based on their
atomic structure. The model’s architecture is based on three principal components: the
calculation of distances between pairs of atoms, a basis of radial Gaussian functions,
and a multilayer SchNet representation with a specified number of atomic interactions.
The cutoff value for atomic interactions has been set to 5 A, which allows the model
to consider local atomic interactions over a sufficiently wide range. Optimization was
conducted using the AdamW algorithm [15] with a selected learning rate of le-4. The
data underwent a series of transformations, including the removal of energy offsets, in
order to facilitate the optimal processing of large data sets.

3 Results

The accuracy of the SchNet model for xylan chains was validated by comparison with
DFT calculations. A B3LYP function with the 6-311G(2df,p) basis set was employed
using Psi4 library [16, 17], with 10 GB of memory and four computational threads
allocated. Due to the constraints of the hardware, DFT calculations were conducted for
chains comprising a maximum of 15 mer units. The longer structures would necessitate
a significantly greater allocation of RAM resources.
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Fig. 1. Validation of ML model, comparison vs DFT
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A comparison of the DFT and ML results (Fig. 1) demonstrated a high degree of cor-
relation between the two methods across the 3 to 15 range of chain lengths investigated.
The energy values predicted by SchNet were in close agreement with the reference DFT
values. This validates that the ML model has effectively learned energy patterns from
small molecules and can reliably predict the energies of much larger structures (Fig. 2),
for which DFT calculations would be impractical or infeasible.
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Fig. 2. Large xylan structure, C400Hg420400, 80 monosaccharide units
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The substantial time savings achieved through machine learning (ML) techniques are
evident (Fig. 3). As more monosaccharide groups are incorporated into the ML model,
the computational power requirements exhibit only a slight increase, with this trend
gradually stabilising. In contrast, the classical model based on DFT methods demon-
strates a pronounced growth in computational demands, aligning with the anticipated
computational complexity of O(n?).

The relationship between the local energy density index and molecule size reveals
several significant patterns that facilitate a deeper comprehension of the way how energy
density evolves with molecule size (Fig. 4).

The initial trend is a general decrease in index values, which is particularly pro-
nounced for small molecules up to approximately 15-20 units in size. In this initial
phase, the index values decrease rapidly before gradually stabilizing and transitioning to
a smoother, more uniform decline. Three characteristic regions can be distinguished: an
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Fig. 3. Execution times for DFT and ML models at 11th Gen Intel(R) Core(TM) i7-11700K @
3.60GHz.

initial period of rapid decline (for molecules with a size of 3—15 monosaccharide units),
a transition region (around 15-25 units) and a plateau region (above 25 units) in which
the index values remain stable at around -590 to -600 kJ/(moleA2).

These trends suggest that smaller polysaccharides (3—15 units) have a higher local
energy density, indicating a more compact structure and stronger intramolecular interac-
tions, resulting in higher energy concentration per unit area. In contrast, larger polymers
(above 25 units) achieve a stable index level, which may indicate that their spatial orga-
nization obtains more uniform energy distribution, which is characteristic of structurally
repetitive polymers. The fluctuations in the index values within the plateau region are
attributed to local conformational variations of the chain, which do not markedly influ-
ence the overall energy stability. The local energy density index can be used to determine
the critical length of a molecule’s chain, after which the energy properties stabilize and
further chain growth does not significantly alter the energy distribution.

The dependence of local energy density index on total energy (Fig. 5) indicate regions
of higher negative energy density between —600 and —620 kJ/(mol-A2). Such structures
can be more challenging for enzymes due to their stronger intermolecular interactions and
more compact spatial organization. Substrate accessibility is hindered and reorganization
of the structure for enzyme action is associated with a higher energy cost.

For higher values of local energy density index, closer to -500 kJ/(mol-A2), structures
become more accessible to enzymes. The easier accessibility of the glycosidic bonds
implies a lower remodeling cost and thus a higher efficiency of xylanases. This shows
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Fig. 4. Local energy density index vs polysaccharide size
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preferable by enzymes regions with higher local energy density index values, where
bonds are more exposed.

In the field of enzyme kinetics, structures with higher local energy density index,
located on the right side of the graph, can have higher values of turnover number, lower
values of affinity for substrate and higher overall catalytic efficiency [18]. These proper-
ties indicate favorable conditions for efficient enzyme performance, which is particularly
relevant in the context of biorefineries [19], where optimization of enzymatic processes
may involve favoring substrates with a suitable Local Energy Density Index range or
pre-treating the substrate to reduce its energy density.

4 Conclusions

This study demonstrates the potential of computational methodologies in advancing
molecular modeling, with the SchNet model exhibiting high accuracy in predicting
the energy profiles of xylan chains, effectively capturing the energy distribution trends
observed in DFT calculations. This validation against DFT confirms the model’s reli-
ability for larger structures, showing it as an efficient alternative to resource-intensive
quantum methods.

The analysis reveals the existence of distinct regions in the Local Energy Density
Index curve, which highlight the varying structural characteristics of xylan chains as their
length increases. The local energy densities of shorter chains (3—15 units) are higher,
indicative of compactness and strong intramolecular interactions. In contrast, longer
chains (25 units and above) reach a stable energy distribution, suggesting an optimal
spatial organization typical of extended polymers.

From a biotechnological perspective, these insights have practical implications, par-
ticularly in the context of enzyme-catalyzed degradation processes. Xylanase enzymes,
which are responsible for the breakdown of xylan chains, may operate more efficiently on
regions with higher Local Energy Density Index values due to the increased accessibility
of glycosidic bonds. It can therefore be surmised that modifying the xylan structure in
order to optimize these regions, or alternatively, to target them selectively, could result
in an enhancement of the catalytic performance.

Furthermore, the stabilizing trend in glycosidic bond surface energy with increasing
chain length is consistent with a shift towards polymer-like characteristics, indicating
the potential for an effective enzyme interaction threshold. Insights from this study
highlight SchNet’s usefulness in capturing complex molecular energy profiles, opening
ways for targeted biotechnological applications in enzyme-catalyzed processes with
polysaccharides like xylan, and also demonstrating the transformative role of advanced
computational tools in system development and biotechnological innovation.
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